Graded weakly prime ideals of non-commutative rings
نویسندگان
چکیده
In this article, we consider the structure of graded rings, not necessarily commutative nor with unity, and study weakly prime ideals. We investigate rings in which all graded...
منابع مشابه
PRIME IDEALS OF q-COMMUTATIVE POWER SERIES RINGS
We study the “q-commutative” power series ring R := kq[[x1, . . . , xn]], defined by the relations xixj = qijxjxi, for mulitiplicatively antisymmetric scalars qij in a field k. Our results provide a detailed account of prime ideal structure for a class of noncommutative, complete, local, noetherian domains having arbitrarily high (but finite) Krull, global, and classical Krull dimension. In par...
متن کاملOn generalisations of almost prime and weakly prime ideals
Let $R$ be a commutative ring with identity. A proper ideal $P$ of $R$ is a $(n-1,n)$-$Phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin R$, $a_1cdots a_nin Pbackslash P^m$ ($a_1cdots a_nin Pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin P$, for some $iin{1,ldots,n}$; ($m,ngeq 2$). In this paper several results concerning $(n-1,n)$-$Phi_m$-prime and $(n-1,n)$-...
متن کاملNormal Ideals of Graded Rings
For a graded domain R = k[X0, ...,Xm]/J over an arbitrary domain k, it is shown that the ideal generated by elements of degree ≥ mA, where A is the least common multiple of the weights of the Xi, is a normal ideal.
متن کاملDirected prime graph of non-commutative ring
Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$. Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...
متن کاملGraded Prime Ideals Attached to a Group Graded Module
Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2021
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2021.1928151